

 After completing this lesson you will understand about:

 The functions and types of functions.
 How to write functions.
 Local variables, void functions, function overloading, inline

functions.
 Parameter passing, passing default arguments and function

calling another functions.
 Recursive functions
 Procedural abstraction, testing and debugging.

3.1 Functions

3.1.1 Predefined functions
3.1.2 Programmer defined functions

3.2 Local variables
3.3 Parameter passing into functions

3.3.1 Call by value mechanism
3.3.2 Call by reference mechanism

3.4 Function Overloading
3.5 Void functions
3.6 Function calling another function
3.7 Inline functions
3.8 Default arguments
3.9 Recursive functions
3.10 Procedural abstraction
3.11 Testing and debugging
3.12 Summary
3.13 Technical terms
3.14 Model questions
3.15 References

Lesson3: Procedural Abstraction
And Functions

Objectives

Structure Of The Lesson

C++ has facilities to include separate subprograms into programs. These
subprograms are called functions. A function that returns a value is like a
small program. The arguments to the function serve as the input to this
small program and the value returned is like output of this program. When
a subtask of a program take some values as input and produce a single
value as its result, then such subtask can be said as a function.

Functions can be divided into two. They are

a) Predefined functions
b) Programmer defined functions.

Predefined functions are the functions that are already built and
supplied along with the compiler. These functions are also called library
functions and they are stored in the header files with “.h” extension. A
header file for a library provides the compiler with certain basic
information about the library and include directive delivers this
information to the compiler. Some of the header files are – iostream.h,
math.h, ctype.h,stdlib.h, string.h, manip.h, conio.h some predefined math
functions are:

Return type Function name Example O/p

double sqrt(double n) sqrt(4.0) 2.0

This returns the square root of a given number

double pow(double a,double b) pow(2.0,3.0) 8.0

This returns the ab . If the first argument is a negative number, then the

second argument must be a whole number.

double fabs(double num) fabs(-7.5) 7.5

It calculates the absolute value of the given number

3.1 Functions

3.1.1 Predefined Functions

double ceil(double num) ciel(3.2) 4

It returns the smallest integer greater than the number.

double floor(double num) floor(3.9) 3

It returns the largest integer less than the number.

A function can be defined by the user either in the same file as part of the
main program or in a separate file so that the function can be used
several times. Such functions are called Programmer defined
functions. A function is like a small program is same as running the
program. A function generally uses formal parameters to input the various
values into the function. The description of the function is divided into two
parts. They are called

 function prototype
 function definition

Function Prototype: The prototype describes what the function look like
i.e., it tells about the function name the return type of the function, the
number of arguments and the type of the arguments passed into the
function, the identifier name may or may not be declared in the arguments
list of the prototype. The identifiers used in the arguments list are called
as formal parameters. The formal parameters are used as a kind if place
holder for the arguments. The general format of the function prototype is:

Syntax:
Type returned function name(type1 fp1,jtype2 fp2);

e.g.: double totalweight (int num, double weight);

or
double totalweight (int, double);

A function prototype should appear before the function call,

normally they are placed before the main part of the program.

3.1.2 Programmer Defined Functions

Formal
parameters

Function Definition: A function definition describes how the function
computes the value it returns. A function definition consists of a function
header followed by the function body. A function header is written same
as the function prototype, except the header does not have a semicolon
at the end. The function body follows the function header and completes
the definition. The function body consists of declaration and executable
statements enclosed within a pair of braces. the value returned by the
function is determined when the function executes a return-statement.

The general format of a function definition is given below.

Return type function name (data type fpar1,datatype,fpar2…)
{
declaration
:
:
executable statements

:
:
return statement;
}

eg: float billcal(int n, float c) //function header
{
const float tax=0.15;
float bill amount;
billamount=n*c;
bill=billamount+billamount*Tax;
return bill;
}

Function Call: Function call is a statement that involves a controlled
transfer to the definition of the function, i.e., invokes the function. The
function call statement consists of function name and list of actual
arguments written within the parameters.

Syntax: Function name (actual parameters list);

Body of the
function

 Write a program to display maximum of two numbers using
functions.

#include<iostream.h>
void main()
{
int a,b;
int max(int,int);
cout<<”enter a,b”;
cin >> a>>b;
cout<<maxi(a,b);
getch();
return 0;
}
int max(int a, int b)
{
if(a>b)
return a;
else
return b;
}

Variables that are declared within the body of the function are said to be
local to that function or the scope is within the function. The variables that
are declared in the main part of the program are said to be local to the
main part of the program.

If variable is local to a function then we can have another variable with the
same name which is declared in the main part of the program or in some
other function. These two will be different variables even though they
have the same name.

Program to demonstrate the local and global variables

#include<iostream.h>
#include<conio.h>
int x=5; //global variable
int fun1();
int fun2();
int fun3();

3.1.2 Local Variable

void main()
{
cout<<x<<end1;
int x=10; //local to main
cout<<fun1()<<end1;
cout<<fun2()<<end1;
cout<<fun3()<<end1;
cout<<x;
return 0;
}
int fun1()
{
x+=2; //uses global variable
cout<<x<<”\n”;
return x;
}
int fun2()
{ int x; //local to fun2()
cin>>x;
cout<<x<<”\n”;
return x;
}
int fun3()
{
 x=x+1; //uses global variable
cout<<x<<”\n”;
return x;
}

The parameters to a function can be passed in two ways. They are

 Call by value
 Call by reference

Call By Value Mechanism: Formal parameters of a function are local to
the function. They can be used just like a local variable. We should not
add a variable declaration for the formal parameters. When a function is
called the values of actual arguments are copied to formal parameters
within the function. We can make any changes to the values of the formal
parameters but these changes will not be reflected on the values of the
actual arguments. This mechanism is called call by value mechanism.

3.3 Parameter Passing Into Functions

Program to demonstrate call by value mechanism
#include<iostream.h>
void swap (int,int);
void main()
{
int a,b;
cout<<”enter a,b”;
cin >> a>>b;
swap (a,b);
}
void swap(int a, int b);
{
int c;;
c=a;
a=b;
b=c;
cout<<a<<” “<<b;
}
#include<iostream.h>
void swap (int,int);

output:
enter a,b2
3
3 2

Call By Reference Mechanism:To make a formal parameter a call by
reference parameter an “&” sign should be appended to its date type
name. The corresponding actual argument in the function call should be
a variable but not a constant or an expression when the function is called
the corresponding actual variable argument (not a value) will be
substituted for the formal parameter. Any changes made to the formal
parameter in the function body will reflect on the actual argument
variable.

Program to demonstrate call by reference mechanism

#include<stdlib.h>
#include<iostream.h>
#include<iostream.h>
void read(int &x);// prototype type for read function.
void main()
{
int a,b;
cout <<"enter two integers:";
read(a);

read(b);
cout<<"a is " <<a<<end1;
cout<<"b is"<<endl;
}
void read(int&x)
{
cin >>x;
}

output:
enter two integers:3
3
a is 3
b is

Program to read two variable and arrange them in order using 3
functions read (), swap (), display().

#include<iostream.h>
#include<conio.h>
void read(int &x,int &y);
void swap(int &x,int &y);
void show result(int x,int y);
void main()
:
int a,b;
cout <<”enter a&b values :”;
read (a,b);
if(a>b)
swap(a,b);
showresult(a,b);
getch();
}
void read (int &x, int &y)
{
cin>>x>>y;
return;
}
void swap(int &x,int &y)
{
x=x+y;
y=x-y;
x=x-y;
return;
}
void show (int x, int y)

{
cout<<”after swaping:”
<<a<< end <<b;
return;
}

output:
enter a&b values :3 4
after swaping: 4 3

Writing two or more function definitions with the same function name is
called function overloading. Such overloading definitions must have
different number of formal parameters or it can have same number of
parameters with different data types. When there is a function call, the
compiler uses the function definition whose number of formal parameters
and the type of parameters match the argument in the function call.

C++ allow us to use the function name by overloading them .However, it
is not possible to overload a function name by giving two functions that
differ only in the type of return value. I.e., the overloaded definitions are
uniquely identified with the help of arguments list for the functions.

Sub tasks are implemented as functions in C++. A subtasks might
produce several values are it might return no value. A function must
either return a single value or return no value at all. A function that return
no value is called a void function. In the void function it does not return
any value to the rest of the program but produces the output on the
screen.

Syntax:

//Function prototype
void function name(parameter list);
//function definition.
Void function name(parameter list)
{
body of the function;

3.4 Function Overloading

3.5 Void Functions

:
:
return;
}

Program to demonstrate void functions

 #include<iostream.h>
void starline(void) // this prints line of 10 *'s
{
for (int i=1; i<=10;i++)
cout<<"*";
return;
}
void starline(int n)
{
for (int i=1;i<=n;i++)
cout<<"*";
return;
}

#include<iostream.h>
void main()
{
starline();
int n;
cout<<"enter n value";
cin>>n;
starline(n);
}

output:
enter n value20

Void function may not have any parameters at all. It is optional to write a
return statement in your void function. However, a return statement is
used to make a conditional exit.

void print quotient(int x, int y);
{
if (y==0)
return;
cout <<”quotient=”<<x/y;
}

A function body can contain a call to another function. When this inner
function is called its prototype should appear before its first use. Although
the function call is included in the definition of another function, the
definition of the called function should be put outside the main
program(definition).

e.g:
void order (int & n1, int&n2)
{
 if (n1>n2)
 swap (n1,n2);
}
}
void swap (int n1, int &n2)
{
 int temp
 temp = n1;
 n1 = n2;
 n2 = temp;
 return;

 }

When a function is called lot of extra time is taken in jumping to the
function saving registers pushing arguments into stack and returning into
the calling function for very small function this process increases the
overheads (time). To eliminate the cost of calls to small functions a new
feature called in line function is proposed. An inline function is a function
i.e. expanded in line when it is invoked. The compiler replaces the
function call with the corresponding function code (similar to macro
expansion)

Syntax: inline function name(parameter list)

{
function body
}

3.6 Function Calling Another Function

3.7 Inline Functions

C++ allows a call to the function without specifying all its arguments. In
such conditions, the function assigns a default value to the parameter
which does not have a matching argument in the function call.

Default values are specified when the function is declared. The compiler
looks at the prototype uses and allots the program for possible default
values we must add default from right to left in proto typing default
arguments are useful where some arguments always have the same
value.

program to demonstrate the usage of default arguments

#include<iostream.h>
float value (float p, float t, float r=0.15);
void printline(char ch='*', int len=40);//Default arguments
int main()
{
float amount;
printline();
amount=value(5000,0.5);
cout<<"Amount = "<<amount;
return 0;
}
float value (float p, float t, float r)
{
float amount;
amount=(p*t*r)/100.0;
return amount;
}
void printline(char ch, int len)
{
for (int i=0; i<=len;i++)
cout<<ch;
cout<<"\n";
}

output:

Amount = 3.75

3.8 Default Arguments

A function that contains a function call to itself, or a function call to a
second function which eventually calls the first function is known as a
recursive function . The recursive definition for computing the factorial of
number can be expressed as follows :
 fact (n)= { 1 if n=0

 N*fact (n-1), otherwise

Recursion, as the name suggests, revolves around a function recalling
itself . The recursive approach of problem solving substitute the given
problem with another problem of the same form in such a way that the
new problem is simpler than the original .

Two important conditions which must be satisfied by any recursive
function are :

1. Each time a function calls itself it must be nearer, in some
sense, to a solution.

2. There must be a decision criterion for stopping the process or
computation .

Recursive function involves saving the return address, formal
parameters, local variable upon entry , and restore these parameters and
variable on completion.

factorial of a number using recursion

#include<iostream.h>
void main (void)
{
 int n;
 long int fact(int); //prototype
 cout<<"Enter the number whose factorial is to be found
";
 cin>>n;
 cout<<"The factorial of "<<n<<"is"<<fact(n)<<endl;
}
long fact(int num)

3.9 Recursive Function

{
 if(num==0)
 return 1;
 else
 return num *fact (num -1);
 }

output:
Enter the number whose factorial is to be found 5
The factorial of 5is120

The principle of procedural abstraction is that, the function should written
so that it can be used like a black box. This means that the programmer
who uses the function need not know the body of the function to see how
the function works. The function prototype and its comment should be
known in order to use the function.

How To Write A Black Box Function Definition :The prototype
comment should tell the programmer all the condition that are require as
argument the function and it should describe the value returned by the
function when the function is called.All variables used in the function body
should be declared in the function body itself (formal parameters need not
be declared).

The function prototype is broken down into two kinds of information called
a pre- condition and post- condition. Pre – condition states that the
assumption to be true when the function is called .The function should not
be used and can’t be expected to perform correctly unless the pre-
condition holds. The post-condition describes the effect of the function
call. i.e.., what will be true after the function is executed, when the pre-
condition holds.

e.g.: void swap(int & var1 , int& var2);
// Pre-condition: var1, var2 has been given values
// Post condition: The value of var1, var2 has been
 changed

Note: Designing a function that can be used a black box can also be
called as information hiding .

3.10 Procedural Abstraction

In top-down design each function is designed, coded (C++ program) and
tested as a separate unit from the rest of the program. The given task is
divided into smaller and manageable subtask. These subtasks are
converted into C++ functions. To test each of the functions
independently, drivers and stubs are used.

A driver program is a temporary tool with minimum code. This program
gets values from the function arguments in the simplest possible way. It
need not do all the calculations that the final program performs.

This program contains some loop statements to repeat the test with
different values. Sometimes it is not possible to test a function without
using some other functions output which was not yet tested.

In this case a simplified version of the untested function called a stub is
used. A stub need not perform correct necessary value for testing in the
simplest possible way.

Rules And Methods Of Testing: Every function should be tested in a
program. The common approach for testing basic functions like I-O is
using the driver programs. We use stubs to test the remaining functions.

The stubs are replaced by functions one at a time, i.e., replace by its
function def and tested once the function is fully tested another stub is
replaced and this process continues until a final program is produced.

 The function is defined and the types of functions , predefined and

programmer defined functions are discussed.
 Call by value and call by reference mechanism in parameter

passing to functions are studied.
 Details of Function overloading, void functions are made clear.

3.11 Testing And Debugging

3.12 Summary

 Calling a function within a function, passing default arguments to
the functions are discussed.

 Procedural abstraction and writing stubs and driver programs
while testing and debugging are covered.

Actual Arguments: Arguments that are used in the function call.

Formal Arguments: Arguments that are used in function header. They
are placeholders that is filled with function arguments when the function
is called.

Function declaration: This provides the information for the function call.
This is also known as function prototyping.

Function definition: It describes how the function computes the value it
returns.

Function Overloading: A language feature that allows a function to be
given more than one definition. The types of arguments with which the
function is called, determines which definition is used.

Information Hiding: The hiding of the state and its implementing details
in the module.

Inline functions: A function definition such that each call to the function
is replaced by the statements that define the function.

1. Discuss the different types of functions?
2. What are predefined and programmer defined function?

Explain with examples.
4. Explain the different mechanisms in parameter passing.
5. What are void functions? Explain with example.
6. What is an inline function? Explain with example.
7. What is a driver ?
8. What is a stub?
9. Explain the principle of procedural abstraction.

3.14 Model Questions

3.13 Technical terms

 Object-oriented programming with C++

by E.Bala Gurusamy
 Problem solving with C++

by Walter Savitch
 Mastering C++

 by K.R.Venugopal,
 RajkumarBuyya, T.RaviShankar

AUTHOR:

M. NIRUPAMA BHAT, MCA., M.Phil.,

 Lecturer
Dept. Of Computer Science

 JKC College
GUNTUR.

3.15 Reference Books

